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Abstract

Background and objectives: Malignant rhabdoid tumor 
(MRT) is an aggressive malignancy driven by pathogenic 
variants of SMARCB1/INI1 or, rarely, SMARCA4/BRG1. The 
heterogeneity of MRT suggests that other genomic altera-
tions might contribute to tumor behavior. This study aimed 
to evaluate somatic copy number alterations (SCNAs) and 
mutation landscapes in MRT before and after treatment. 
Methods: With IRB approval, five patients underwent 
normal-tumor paired whole exome sequencing. Subse-
quently, the results were further analyzed using MuTect 
v1.1 for variant DNA and cn.mops for SCNA. Results: Our 
study revealed recurrent SCNAs harboring genes known 
to be involved in tumorigenesis. These include 2q37.3 
gain (4/5, 80%, programmed death 1, TWIST2), 7q32.1 
gain (3/5, 60%), 11q12.2 gain (3/5, 60%), 14q32.3 gain 
(4/5, 80%), 19p13.2 loss (SMARCA4, 4/5, 80%), 21q22.3 
gain (3/5, 60%), and 22q11.1 loss (2/5, 40%, involving 
SMARCB1). Alterations more common in posttreatment 
MRTs included 11p15.4 gain (3/3, 100%) and 11q12.2 
gain (2/3, 67%). No actionable pathogenic variants were 
observed. PD-1 immunohistochemistry correlated with 
2q37.3 gain. Conclusion: Our study revealed recurrent 
SCNAs in MRT. Genes within these regions are known to 
be associated with the tumor immune response and me-
tastasis. This preliminary study demonstrated the poten-
tial value of SCNAs in furthering the understanding of this 
highly malignant tumor.

Citation of this article: Ma Y, Kaushal M, Dehner LP, Pfeif-
er J, He M. Somatic Copy Number Alterations and Mutation 
Landscape in Before and Post-treatment Malignant Rhabdoid 
Tumor. J Clin Transl Pathol 2024;4(1):1–11. doi: 10.14218/ 
JCTP.2023.00028.

Introduction
Malignant rhabdoid tumor (MRT) and related INI1-deficient 
neoplasms are present in the kidney and various extrarenal 
sites, including the central nervous system (atypical teratoid/
rhabdoid tumor). These occurrences predominantly affect in-
fants and young children and are genetically characterized 
by pathogenic variants of SMARCB1 (>95%), or rarely, of 
SMARCA4 (<5%).1–7 These genes encode proteins that are 
components of the chromatin remodeling complex SWI/SNF, 
a highly conserved transcription regulator that recruits other 
transcription factors for target genes or alters nucleosome 
positions to modulate target gene expression.8,9 The multi-
modal approach to management yielded disappointing out-
comes.10,11 The latter experience has motivated the pursuit 
of studies to better understand this tumor and its microen-
vironment. Technical advances have provided methods for 
dissecting the molecular and genomic landscape to gain in-
sight into the events of tumorigenesis, tumor progression, 
and molecular alterations during treatment.

The molecular heterogeneity of MRT has been document-
ed over the past several years.12 Our hypothesis is that in ad-
dition to driver mutations, other genomic alterations in MRT 
might also contribute to tumorigenesis, tumor progression, 
and response or lack thereof to management and poor out-
come. This study utilized whole exome sequencing to ana-
lyze somatic copy number alterations (SCNAs) and somatic 
variants in MRT patients. The results demonstrated genomic 
alterations, in addition to driver mutations, providing an ad-
ditional layer of insight into one of the most aggressive neo-
plasms of childhood.

Material and methods
The sample selection and experimental studies were per-
formed as previously described.13 All case and case identi-
fication numbers were the same as previously described.13

Patient samples
This study was approved by the Washington University In-
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stitutional Review Board (IRB # 201102311 “Nextgen Se-
quencing Approaches” and 201705056 “Expression of Tumor 
Immunotherapy Related Markers in Pediatric Malignancies”; 
informed consent was waived). The present study was retro-
spective and included chart review and residual tissue study 
following relevant guidelines and regulations. The terms 
“malignant rhabdoid tumor” and “atypical teratoid/rhabdoid 
tumor” were searched in the departmental archives of the 
Lauren V. Ackerman Laboratory of Surgical Pathology, Barnes-
Jewish Hospital and St. Louis Children’s Hospital from 1990 to 
2017. Hematoxylin and eosin (H&E) and related immunohis-
tochemical staining slides were reviewed, and patients with 
sufficient tissue (formalin-fixed paraffin-embedded (FFPE) 
tissue from biopsy/resection specimens) were included.

DNA extraction and whole-exome sequencing
Cases with sufficient amounts of both normal and tumor tis-
sue underwent whole exome sequencing (WES). Genomic 
DNA was extracted from FFPE tissue from both the normal 
and neoplastic tissues using standard methods as detailed 
below.

DNA extraction
Genomic DNA of both normal and neoplastic tissue was ex-
tracted from the FFPE tissue at the Washington University 
Genome Technology Access Center (GTAC), St. Louis, MO, 
using the AllPrep DNA/RNA FFPE Kit (Qiagen, cat#80234). 
The extracted DNA was qualified using a Tapestation 4200 
(Agilent).

Whole-exome sequencing
Whole-exome sequencing was performed at the Washington 
University GTAC facility as mentioned earlier. The genomic 
DNA was sonicated to an average size of 175 bp; the DNA 
fragments were ligated to the ends of Illumina sequencing 
adapters. The ligated DNA fragments were amplified for 7 
cycles. DNA fragments were then hybridized to biotinylated 
RNA oligos specific to regions of interest (Clinical Research 
Exome [Agilent] and selected from the remaining fragments 
using streptavidin beads. The enriched library was amplified 
for 14 cycles with primers incorporating a unique indexing 
sequence tag. The resulting libraries were sequenced using 
the Illumina HiSeq-3000 platform to obtain 150 bp paired-
end reads. Sequencing data revealed 25–30 M reads for nor-
mal tissue and 45–50 M reads for neoplastic tissue.

Somatic single nucleotide variant (SNV) determina-
tion
The raw sequencing data were processed, including variant 
score recalibration following the Genome Analysis Toolkit 
(GATK) v 3.3.0 best practices recommendations. Mutation 
(variation) analysis and somatic mutation (variation) dis-
covery for SNVs were performed using MuTect v1.1.4. Indel 
calling and somatic indel identification were performed us-
ing the GATK IndelGenotyper tool v2. The SNVs and indels 
were subsequently annotated using ANNOVAR. The tumor 
mutational burden was calculated as the total number of 
missense somatic variants/54 mb, representing the size 
of the Agilent clinical exome. The detected variants were 
subsequently evaluated for clinical significance, including 
pathogenicity, following published guidelines.14

SCNAs
The presence of SCFAs (short-chain fatty acids) was deter-
mined by comparing the number of aligned reads per gene 
obtained by WES in tumors with that in normal tissues (con-

trols) via the cn.mops tool. Gain or loss was defined by abs_
CN, where 0 or 1 = deletion and 3 or more = amplification.

Immunohistochemistry (IHC)
Representative sections of tumor tissue from each case (one 
section per case) were selected. IHC staining with appropri-
ate controls was performed on FFPE tissue samples for the 
following IHC markers such as PD-1 (2.97 µg/mL, mouse 
monoclonal, clone NAT105, Ventana, Tucson, AZ, USA), fol-
lowing standard protocols on a Ventana automated stainer 
(Ventana Medical Systems, Tucson, AZ, USA) in the AMP 
(Anatomic and Molecular Pathology) Core Lab, Department 
of Pathology & Immunology, Washington University School 
of Medicine. IHC staining was evaluated as follows: PD-1 ex-
pression was assessed semiquantitatively, and the number 
of stained cells per high-power field (400×) was calculated 
based on staining intensity (1+, 2++, and 3+++).

Results

Demographic data of the MRT patients
Five patients with adequate material were subjected to tu-
mor-normal paired whole-exome sequencing (Table 1). All 
five patients had germline SMARCB1/INI1 gene mutations to 
corroborate the pathological interpretation.13 Among these 
patients, two had paired primary (pre-treatment, designat-
ed as C) and metastatic (post-treatment, designated as M) 
tissue samples, two had primary tissue samples (only pre-
treatment tissue). Additionally, one had both pre-treatment 
and post-treatment relapsed tissue samples (designated as 
R). In total, there were three patients with post-treatment 
samples.

SCNAs
SCNAs were analyzed in both the pre-treatment and post-
treatment groups. Twenty-one loci with SCNAs were iden-
tified at the whole-exome level in both groups, while the 
post-treatment group had seven unique foci with SCNAs (Fig. 
1a and b, Table 2). Ten foci of SCNAs harbored malignancy-
related genes.

Several recurrent SCNAs were identified that harbored 
gene alterations previously detected in malignancies. These 
alterations included 2q37.3 gain (4/5, 80%, PD-1, TWIST2), 
7q32.1 gain (3/5, 60%), 11q12.2 gain (3/5, 60%), 14q32.3 
gain (4/5, 80%), 19p13.2 loss harboring SMARCA4 (4/5, 
80%), 21q22.3 gain (3/5, 60%), and 22q11.1 loss (2/5, 
40%) involving SMARCB1. Alterations more frequently en-
countered in post-treatment MRTs were 11p15.4 gain (3/3, 
100%) and 11q12.2 gain (2/3, 67%).

In the post-treatment group, seven unique foci of SC-
NAs were detected, including gain of copy number in four 
genes known to be involved in tumorigenesis: chromosome 
11p15.4 harbors LMO1 (LIM domain only 1) and MMP26 
(matrix metallopeptidase 26); chromosome 12q24.31 has 
TRIAP1 (TP53 Regulated Inhibitor of Apoptosis 1); chromo-
some 14q32.32, TRAF3 (TNF Receptor Associated Factor 3) 
with amplification; and chromosome 17q25.1 has SLC9A3R1 
(solute carrier family 9 (sodium/hydrogen exchanger), mem-
ber 3 regulator 1).

Somatic variation/mutation landscape
Somatic mutations (variations) are listed in Figure 2. These 
mutations included nonsense mutations, frame shift inser-
tions, frame shift deletions, frame insertions, frame dele-
tions, splice site deletions, missense mutations, and 5′ flank-
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ing regions. A search in ClinVar suggested that most of these 
variations are more likely benign. Notably, DDX11 (DEAD/H-
box helicase 11) R186 W, was found in 2/5 cases (40%) and 
could possibly be actionable (Table 3).14–17

IHC analysis of PD-1
Gain of chromosome 2q37.3 in both the pre- and post-treat-
ment groups suggested possible amplification of PD-1 and 
TWIST2 (the twisted family BHLH transcription factor 2, Fig. 
3a). To investigate whether PD-1 locus gain correlated with 
protein expression, IHC was performed on PD-1 (Fig. 3b). 
The PD-1 immunostaining score was higher in tumors with 
2q37.3 gain (Fig. 3c). With an immune score of 100 as the 
cutoff, a significant difference in the IHC score was observed 
between those cases with 2q37.3 gain versus no gain (3/3 vs 
0/4, P = 0.03; Fisher’s exact test).

Discussion
This study is the first effort to investigate SCNAs and somatic 
variations in primary, pre-treatment, and post-treatment 
metastatic or recurrent MRTs by normal-tumor whole-exome 
sequencing. Several recurrent SCNAs were identified and 
were shared by more than one patient, some of which har-
bored genes with alterations known tumorigenic alterations. 
These alterations included 2q37.3 gain (4/5, 80%; PD-1, 
TWIST2), 7q32.1 gain (3/5, 60%), 11q12.2 gain (3/5, 60%), 
14q32.3 gain (4/5, 80%), 19p13.2 loss harboring SMARCA4 
(4/5, 80%), 21q22.3 gain (3/5, 60%), and 22q11.1 loss 
(2/5, 40%) involving SMARCB1. Alterations more common in 
post-treatment MRTs included 11p15.4 gain (3/3, 100%) and 
11q12.2 gain (2/3, 67%). The recurrent 2q37.3 gain involv-
ing the PD-1 gene correlated with PD-1 IHC.

Previous genomic studies of MRT/AT/RT and com-
parisons with our findings
To date, genetic and genomic studies have investigated 
somatic variations, SCNAs, gene expression via path-
way analysis, microRNAs, and methylation. These stud-
ies have revealed the presence of driver mutation(s), 
epigenetic dysregulations, and dysregulated pathways (Ta-
ble 4).3,12,18–21 In our study, loss of 22q11.1 was identi-
fied in two patients (40309_C and 40310_C), while loss 
of 22q11.23 was observed in two patients (40309_C and 
40312_M) where SMARCB1 was located. These findings are 
consistent with the findings of earlier studies.3 SMARCA4 

mutations are present in MRTs. The heterozygous nonsense 
mutation c.3565C>T (p.Arg1189X) was found in SMAR-
CA4, suggesting that either a severely truncated transla-
tion product or nonsense-mediated decay of mRNA were 
possible consequences.4,18 SMARCA4 is located at 19p13.2 
according to Ensembl. In our study, the 19p13.2 deletion 
was found in two patients (40309_C, 40312_C), and the 
19p13.2 gain was observed in three patients (40307_M, 
40311_R, 40312_M).

SCNAs in MRT
In addition to the findings of prior studies, the present study 
revealed several recurrent SCNAs that harbor genes with al-
terations involved in malignancy. These alterations included 
2q37.3 gain (4/5, 80%; PD-1, TWIST2), 7q32.1 gain (3/5, 
60%), 11q12.2 gain (3/5, 60%), 14q32.3 gain (4/5, 80%), 
19p13.2 loss harboring SMARCA4 (4/5, 80%), 21q22.3 
gain (3/5, 60%), and 22q11.1 loss (2/5, 40%) involving 
SMARCB1.

Alterations more frequently observed in posttreatment 
MRTs included 11p15.4 gain (3/3, 100%) and 11q12.2 gain 
(2/3, 67%). 11p15.4 was the only SCNA in two metastatic 
patients (40307_M, 40312_M), suggesting that a gain of 
11p15.4 might indicate the possibility of metastasis.

Potential pathogenic roles of gene amplification in 
MRT
In our study, SCNAs were also found in regions where sev-
eral other important tumorigenesis-related genes are located 
(Table 2). A gain in chromosome 2q37.3 was found in four 
patients (40307_M, 40309_C, 40311_R, and 40312_C), in 
which the PD-1 gene and TWIST2 (twist family BHLH tran-
scription factor 2) gene were located. In the CD8+ cytotoxic 
antitumor response, receptor-ligand interactions between 
molecules such as programmed cell death 1/programmed 
cell death ligand 1 (PD-1/PD-L1) suppress the CD8+ cyto-
toxic response. The PD-1 gene encodes PD-1 (also known 
as CD279), which is a negative stimulator of the immune 
system with potent inhibitory effects on T and B lymphocytes 
as well as the monocyte response.22–25 The expression levels 
of these genes during persistent antigen exposure are ob-
served in chronic infections and cancer. IHC staining for PD-1 
was performed, revealing a significantly higher PD-1 immu-
nostaining score in tumors from patients with 2q37.3 gain.

Overexpression of the TWIST1 and TWIST2 proteins has 

Table 1.  Demographic data of the MRT patients

Case number Sequencing 
number Tumor status Age at 

diagnosis
Gen-
der Location Germline SMARCB1 

variations

Primary, pre-treatment

3 40310_C Primary, before treatment 9 weeks F Kidney Intronic

6 40311_C Primary, before treatment 9 months M Soft tissue p.R332W

5 40312_C Primary, before treatment 6 months M Liver p.R40X, p.P221L

8 40307_C Primary, before treatment 10 months M Kidney Intronic

13 40309_C Primary, before treatment 19 months F Kidney pW197X

Post-treatment

6 40311_R Post-treatment residual tumor 11 months Soft tissue

5 40312_M Post-treatment metastatic tumor 9 months Lung

8 40307_M Post-treatment metastatic tumor 15 months Lung

MRT, malignant rhabdoid tumor.
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Fig. 1.  Somatic copy number alterations (SCNA) in malignant Rhabdoid tumor. (a) SCNA plot. (b) SCNAs seen in more than one sample, with corresponding 
genes. The numbers in this figure represent various copy numbers. 2 is the normal copy number for diploid samples. 1 is a heterozygous deletion 0 is a homozygous 
deletion. 3 through 8 are amplifications. LMO1, LIM domain only 1 (rhombotin 1); MMP, matrix metalloproteinase; MTA1, metastasis-associated gene 1; PD-1, pro-
grammed death 1; SLC9A3R1, solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 1; SMARCA4, SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily a, member 4; SMARCB1, SWI/SNF-related matrix-associated actin-dependent regulator; TRAF3, TNF receptor associated 
factor 3; TRIAP1, TP53 regulated inhibitor of apoptosis 1; TWIST2, twist family BHLH transcription factor 2; XIAP, X-linked inhibitor of apoptosis.
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been reported in other soft tissue sarcomas, with TWIST2 
amplification observed in rhabdomyosarcoma, contribut-
ing to the repression of myogenesis and promotion of on-
cogenesis.26 Chromosome rearrangement at 14q32.33 
is noted in multiple myeloma with variable partner sites, 
including 11q13.3, 8q24.1, 18q21.3, and 6p21.1.27 In our 
study, chromosome 14q32.33 was found in three patients 
(40309_C, 40311_R, 40312_C), where MTA1 (metastasis-
associated gene 1) is located. MTA1 is related to invasion 
and metastasis.28–32 Chromosome Xq25 is lost in two pa-
tients (40309_C and 40312_C), in which the XIAP gene (X-
linked inhibitor of apoptosis) resides. The XIAPs regulate 
cell death signaling pathways through binding and inhibiting 
caspases and also participate in cancer initiation, promo-
tion, and progression.33–36

SCNA in post-treatment MRT
In our study, several SCNAs were identified in posttreatment 

tumors with chromosomal gains. Chromosome 11p15.4 was 
found in three patients (40307_M, 40311_R, 40312_M), in 
which LMO1 (LIM domain only 1 or rhombotin 1) and MMP26 
(matrix metallopeptidase 26) were located. LMO1 functions 
as a neuroblastoma oncogene and is implicated as an on-
cogene in colorectal and lung cancer.37,38 Proteins of the 
matrix metalloproteinase (MMP) family are involved in the 
breakdown of the extracellular matrix in normal physiologi-
cal processes, such as embryonic development, reproduc-
tion, and tissue remodeling. Additionally, they are involved 
in disease processes such as arthritis and metastasis and 
have been reported as biomarkers of various cancers.39–41 
Chromosome 12q24.31 is gained in two patients (40307_M 
and 40311_R), hosting the TP53-regulated inhibitor of apo-
ptosis 1 (TRIAP1) gene. TRIAP1 is a novel apoptosis inhibi-
tor that binds HSP70 in the cytoplasm and inhibits apopto-
some and caspase-9 activation. TRIAP1 has been shown to 
be upregulated in various cancer types.42,43 Chromosome 

Fig. 2.  Somatic mutation landscape in malignant rhabdoid tumors. 
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14q32.32 was found in two patients (40307_M, 40311_R), 
in which TNF receptor-associated factor 3 (TRAF3) was lo-
cated. TRAF3 is expressed in Hodgkin disease and lympho-
mas.44,45 Chromosome 17q25.1 was found in two patients 
(40307_M, 40311_R), in which solute carrier family 9 (so-
dium/hydrogen exchanger) was located. There is growing 
evidence that SLC9A3R1 plays an important role in cancer 
progression.46,47

Overall, our study revealed that in addition to driver mu-
tations, there are recurrent SCNAs in different cases of MRT. 
These alterations are associated with malignancy-related 
genes, including SMARCB1, SMARCA4, PD-1, TWIST2, TRI-
AP1, MTA1, and XIAP. Notably, specific alterations, includ-
ing those in LMO1, MMP26, TRIAP1, TRAF3, and SLC9A3R1, 
are specific for post-treatment MRTs. The identification of 
11p15.4 as the only recurrent SCNA in two metastatic pa-
tients (40307_M, 40312_M) suggests its potential as an in-
dicator of metastasis. There are various treatments available 
for patients with MRT, and our study may contribute to the 
development of treatments based on SCNAs.48 Importantly, 
our study is the first to report specific SCNAs in post-treat-
ment MRTs.

Somatic mutation landscape
No obvious pathogenic variants were found in the current 
study, with the exception of DDX11 (DEAD/H-box helicase 
11) R186 W, which was found in two of five patients. DDX11 
was found to be substantially upregulated in lung adenocar-
cinoma and to predict poor prognosis.49 This mutation may 

be actionable because it is located within a functional heli-
case ATP-binding domain, while there is no variant evidence 
in ClinVar.

Limitations
Due to the limited tissue available for clinical trials, a major 
limitation is the small sample size. Two of the three post-
treatment samples were derived from metastatic sites; 
there is a possibility that these differences were due to 
changes in tumor metastasis rather than to clonal evolution 
specifically from external therapeutic pressures. Moreover, 
the possibility that posttreatment alterations may be arti-
factual due to poor sample quality or necrosis cannot be 
ruled out.

Future directions
We previously reported the expression of PD-L1, PD-1 and 
CD8 as well as the tumor mutational burden in patients 
with malignant rhabdoid tumors.13 Recently, Forrest’s study 
demonstrated similar results for a significant proportion of 
INI1-negative tumors expressing PD-L1.50 These prior stud-
ies suggested future directions for further genomic and im-
munologic characterization of malignant rhabdoid tumors, 
such as those harboring mutation-specific neoantigens and 
in the tumor microenvironment. With more cases of MRT 
studied, we hope to gain more understanding of the clinical 
significance of these genomic alterations, especially those 
with SCNAs.

Table 3.  Somatic variants found in more than one malignant rhabdoid tumor sample

Gene 
name Samples

Muta-
tions (AA 
change)

Actionable
GnomAD 
allele fre-
quency

Func-
tions

Roles in neo-
plasms

CLCNKA 40307, 
40310 (also 
found in 
40311_R 
40307_M?)

A287V Possibly Benign (1 Submission 
in ClinVar though) https://www.
ncbi.nlm.nih.gov/clinvar/variat
ion/773389/?oq=CLCNKA[gen
e]+AND+A287V[varname]+&
m=NM_004070.4(CLCNKA):c.
860C%3ET%20(p.Ala287Val)

Allele 
Frequency 
0.005537 
(exomes) 
https://
gnomad.
broadinstitute.
org/variant/1-
16354394-C-
T?dataset= 
gnomad_r2_1

Chloride 
voltage-
gated 
channel 
Ka

RNA expression 
ratios based on the 
four-gene panel 
can accurately 
classify subtypes 
of RCC as well as 
help distinguish 
some oncocytomas 
from chromophobe 
RCC.15

DDX11 40310, 
40311

R186 W Possibly actionable as the 
mutation is located on a 
functional Helicase ATP-
binding domain. No variant 
evidence in ClinVar though.

Allele 
Frequency 
0.1208 
(Exomes)

DEAD/H-
box 
helicase 
11

DDX11 was 
significantly 
upregulated and 
predicted poor 
prognosis in lung 
adenocarcinoma.16

FCGBP 40307, 
40312

M1617V 
(40307_T) 
K3848E 
(40307_M 
D3847E 
(40307_M) 
R300W 
(40312_T)

M1617V – Possibly benign as 
GnomAD exomes allele frequency 
is high(0.092) and position is not 
conserved; K3848E – Possibly 
Benign as GnomAD exomes allele 
frequency = 0.396 and position is 
not conserved; D3847E- Possibly 
benign as not inconserved region. 
Variant not found in gnomAD 
exomes; R300W – Uncertain 
Significance – not conserved 
but is absent in controls in 
GnomAD with good coverage 
in region. Extremely rare?

M1617V 
- 0.092 
(Exomes); 
K3848E 
– 0.396 
(Exomes); 
D3847E – 
Absent in 
exomes; 
R300W - 
Absent in 
exomes

Fc 
fragment 
of IgG 
binding 
protein

Differentially 
expressed in paired 
tumor-benign 
tissue samples 
from patients with 
stage II CRC.17

CRC, colorectal cancer; RCC, renal cell carcinoma.

https://www.ncbi.nlm.nih.gov/clinvar/variation/773389/?oq=CLCNKA
https://www.ncbi.nlm.nih.gov/clinvar/variation/773389/?oq=CLCNKA
https://www.ncbi.nlm.nih.gov/clinvar/variation/773389/?oq=CLCNKA
https://gnomad.broadinstitute.org/variant/1-16354394-C-T?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/variant/1-16354394-C-T?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/variant/1-16354394-C-T?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/variant/1-16354394-C-T?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/variant/1-16354394-C-T?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/variant/1-16354394-C-T?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/variant/1-16354394-C-T?dataset=gnomad_r2_1
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Conclusions
Our study demonstrated that in addition to the driver muta-
tions SMARCB1 and SMARCA4, MRT patients exhibit recur-
rent SCNAs. As demonstrated by PD-1 immunohistochem-
istry, the expression of genes within these chromosomal 
loci correlates with tumor progression. Nevertheless, genes 
within these regions may be worthy of further studies for 
their role in tumorigenesis and tumor progression including 
metastasis, their potential as treatment targets, and their 
response to treatment.
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Fig. 3.  PD-1 gain and PD-1 immunohistochemistry (IHC) in malignant rhabdoid tumors. (a) Somatic copy number alterations (SCNAs) at chromosomal region 
2q37.3 where the PD-1 gene is located. (b) Representative images of H&E and PD-1 immunohistochemistry (all taken as 400×). (c) PD-1 IHC score summary. H&E, 
ematoxylin and eosin; PD-1, programmed death 1; TWIST2, twist family BHLH transcription factor 2.
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